زمین لرزه

زمین لرزه


عزیزی غزنوی

زلزله . [ زَ زَ / زِ زِ ل َ / ل ِ ] (از ع ، اِ) و رجفه ع، اِ). و در پارسی: لرز. لرزه. لرزش. لغزش. بومهن و بومهین نیز گویند، جنبش سخت و حرکت شدید. و به انگلیسی: Earthquake). زلزله واژۀ از ریشۀ عربی زلزل به معنی لرزش است. در گذشته زمین لرزه را بومَهَن[۳] هم می‌نامیدند که برگرفته از فارسی باستان بوم مثنه مرکب از بوم (زمین) و مثنه (حرکت) به معنی حرکت زمین است

.
جنبش و حرکات ناگهانی پوستۀ جامد کرۀ زمین که در صورت شدت ساختمانها و شهرها را خراب و جمع کثیری را هلاک می کند. زلزله ها معمولاً بسبب لغزش توده های سنگ، فعالیت های آتشفشانی و بالاخره ریزش سقف غارهای بزرگ زیرزمینی حادث می شود. نقطۀ زیرزمینی منشاء زلزله را کانون و نقطۀ سطح زمین را که مستقیماً بالای کانون زلزله واقع است، مرکز زلزله نامند. امتداد زلزله ممکن است طولی یا عرضی یا دورانی موجی باشد که نوع اخیر موجب حرکات و ویرانی شدیدتر می شود و اگر در کف دریاها این وضع بوجود آید، موجب بوجود آمدن امواج شدید و خطرناک می گردد که گاهی سرعت این امواج از ۸۰۰کیلومتر در ساعت متجاوز می شود و ارتفاع آنها تا ۲۰متر هم می رسد. هیچ نقطۀ در زمین از زلزله مصئون نیست، ولی مناطقی در زمین یافت شده که وقوع زلزله در آن منطقه ها فراوان است و این مناطق را کمربندهای زلزله نامیده اند و مهمترین آنها عبارت اند از:
۱کمربند اقیانوس کبیرکه شامل جبال آند، رشتۀ ساحلی امریکای شمالی و امریکای مرکزی، جزایرآلئوسین، جزایر جاپان ، جزایر فیلیپین ، جزایر هند شرقی و زیلاند جدید می باشد.
۲کمربند مدیترانه ای است که منطقۀ وسیعی از کوه های مرتفع آسیای جنوبی و ناحیۀ دریای مدیترانه تا جبل الطارق را شامل می گردد. کمربندهای دیگری نیز وجود دارد که یا در خطوط آتشفشانهای زنده و یا در امتداد رشته کوههای جوان قرار دارند. ایران افغانستان و مناطق همجوار در منطقۀ زلزله (کمربند مدیترانه ای ) قرار دارند و بر اثر زلزله، خرابی های فراوانی از قدیم الایام در این کشورها بوجود آمده است.
زمین لرزه نتیجۀ رهایی ناگهانی انرژی از داخل پوستۀ زمین است که امواج ارتعاشی را ایجاد می‌کند. زمین‌لرزه‌ها توسط دستگاه زلزله‌سنج یا لرزه‌نگار ثبت می‌شوند. هر چقدر، کانون زلزله عمیق‌تر باشد، آسیب، کمتر می‌شود. مقدار بزرگی یک زلزله متناسب با انرژی آزاد شدۀ زلزله است. زلزله‌های کوچک‌تر از بزرگی ۳ ریشتر اغلب غیر محسوس و بزرگ‌تر از ۶ ریشتر خسارت‌های جدی را به بار می‌آورند، البته ریشتر که هر واحد اضافه آن حدوداً ده برابر قبلی است (مثلاً ۵ نسبت به ۶) فقط واحد اندازه و شدت انرژی تخلیه شده‌است اما عوامل متعدد دیگری از فاصله گرفته (عمق بیشتر تأثیر کمتر از زیر ده کیلومتر تا ۷۰۰ کیلومتر همین‌طور فاصلۀ بیشتر افقی از رومرکز) تا جهت لرزش (عمودی یا ضربه‌ای) و نوع طول موج لرزش (فاصله جابجایی مکانی رفتی و برگشتی در هر لرزش) در میزان تخریب تأثیر دارند. امواج زلزله سه نوع P و S (امواج بدنی) و سطحی دارند که نوع P که اول می‌آید به امواج فشاری یا طولی مشهور است زیرا امواجش ضربه‌ای بوده و در جهت انتشار می‌لرزانند (مانند بازی کشیدن طناب) و در پوستۀ زمین با سرعت ۱٫۵ تا ۸ کیلومتر در ثانیه پیش‌می‌روند برعکس امواج S یا امواج قیچی تا ۱٫۷ بار سرعتشان کمتر است و در جهت عمود بر خط انتشار می‌لرزانند (مانند تکاندن سفره) اما نمی‌توانند از مایعات مثلاً آب یا سنگ مذاب مثل هستۀ بیرونی زمین بگذرند. زمین‌لرزۀ شدید در عمق با زاویۀ ۱۰۵ درجه نواحی سطحی را می‌لرزاند و نواحی ورای این زاویه منطقۀ سایه نامیده می‌شوند و از این رو تجربه نشان داده که امواج P فشاری نسبت به S دامنۀ بسیار وسیع‌تری از منطقه سایه را پوشش می‌دهند و موج P می‌تواند با تغییر جهت و گذر از گوشته یا هستۀ بیرونی زمین منطقۀ بسیار دور از رومرکز را بلرزاند.
در نزدیکی سطح زمین، زلزله به صورت ارتعاش یا گاهی جابجایی زمین نمایان می‌شود. زمانی که رومرکز در داخل دریا باشد، در صورت تغییر شکل زیاد و سریع بستر دریا باعث ایجاد سونامی می‌شود که معمولاً در زلزله‌های بزرگ‌تر از بزرگی هشت ریشتر اتفاق می‌افتد. ارتعاشات زمین باعث ریزش کوه و همین‌طور فعالیت‌های آتشفشانی می‌شوند. زمین‌لرزه ۱۹۶۰ والدیویا قدرتمندترین زمین‌لرزهٔ ثبت شده در تاریخ است.
پیش از وقوع زمین‌لرزهٔ اصلی معمولاً زلزله‌های نسبتاً خفیف‌تری در منطقه روی می‌دهد که به پیش‌لرزه معروف‌اند. به لرزش‌های بعدی زمین‌لرزه نیز پس‌لرزه می‌گویند که با شدّت کمتر و با فاصلهٔ زمانی گوناگون میان چند دقیقه تا چند ماه رخ می‌دهد. هرچقدر تعداد پیش لرزه‌ها بیشتر باشد، مقدار ریشتر زمین لرزهٔ اصلی، کمتر می‌باشد.

در حالت کلی کلمهٔ زمین‌لرزه هر نوع ارتعاشی را در بر می‌گیرد - چه ارتعاش طبیعی چه مصنوعی توسط انسان - که موجب ایجاد امواج ارتعاشی می‌شود. زمین‌لرزه‌ها اغلب نتیجۀ حرکت گسل‌ها هستند، و همین‌طور می‌تواند حاصل فعالیت‌های آتشفشانی، ریزش کوه‌ها، انفجار معدن‌ها و آزمایش‌های هسته‌ای باشد.
زلزله‌های تکتونیکی در هر جای زمین که در آن انرژی کرنشی کشسانی به میزان کافی برای گسترش شکستگی در امتداد صفحهٔ گسل ذخیره شده باشد، رخ خواهند داد. در مرزهای صفحه‌های پوسته زمین که بزرگترین صفحه‌های گسل روی زمین را ایجاد می‌کنند، صفحات کنار یکدیگر حرکت یکنواخت و (aseismically) خواهند داشت اگر هیچ بی‌نظمی یا ناهمواری در امتداد مرزهای آن‌ها که باعث افزایش مقاومت اصطکاکی می‌شود، وجود نداشته باشد. بیشتر مرزها دارای این ناهمواری‌ها هستند و این منجر به رفتار چوب – لغزشی (stick-slip behavior) می‌شود. هنگامی که مرزهای صفحه قفل شده باشد، ادامهٔ حرکت نسبی بین صفحات منجر به افزایش تنش و در نتیجه افزایش انرژی انباشته شده در توده‌های نزدیک سطح گسل می‌شود. این افزایش ادامه می‌یابد تا زمانی که تنش افزایش یافته به اندازه‌ای کافی برسد و از طریق شکستن ناهمواری‌ها، ناگهان از بخش قفل شدهٔ گسل اجازه لغزش بیابد و انرژی ذخیره شده را آزاد کند. این انرژی به صورت امواج لرزه‌ای آزاد شده و تابیده شدن گرمای اصطکاکی سطح گسل، و شکستن سنگ آزاد می‌شود که در نتیجه باعث ایجاد زلزله می‌شود. این روند تدریجی ساخت تنش و کرنش که موجب شکست ناگهانی و تولید زلزله است به عنوان نگرهٔ بازگشت کشسان (elastic rebound theory) خوانده می‌شود.

تخمین زده می‌شود که تنها ۱۰ درصد یا کمتر، از کل انرژی زلزله به صورت انرژی لرزه‌ای آزاد می‌شود. بیشترین بخش انرژی زلزله صرف شکستگی سنگ‌ها یا تبدیل به حرارت تولید شده توسط اصطکاک می‌شود؛ بنابراین، زمین لرزه انرژی کرنشی نهفتهٔ کشسانی زمین نزدیک گسل را کاهش می‌دهد و درجۀ حرارت آن را افزایش می‌دهد، اگرچه این تغییرات نسبت به جریان همرفت و رسانایی گرمای خارج شده از اعماق زمین ناچیز است.
سه نوع عمده از گسل وجود دارد که ممکن است موجب زلزله شوند: نرمال، معکوس (محوری) و ضربه‌ای-لغزشی. گسل‌های نرمال و معکوس نمونه‌هایی از شیب - لغزش هستند، که در آن جابه جایی در امتداد گسل در جهت شیب و حرکت بر روی آن‌ها شامل مؤلّفهٔ عمودی می‌شود. گسل نرمال عمدتاً در حوزه‌هایی رخ می‌دهد که پوسته مانند مرز واگرا در حال تمدید شدن است. گسل معکوس در مناطقی که پوسته مانند مرز همگرا در حال کوتاه شدن است رخ می‌دهد. گسل‌های ضربه‌ای - لغزشی ساختمان‌های شیب داری دارند که دو طرف گسل به صورت افقی در کنار یکدیگر می‌لغزند؛ مرزهای تبدیلی نوع خاصی از گسل ضربه‌ای – لغزشی هستند. زلزله‌های بسیاری ناشی از جنبش در گسل‌هایی هستند که شامل هر دو نوع شیب - لغزش و ضربه‌ای- لغزشی است، این لغزش به عنوان مورب شناخته شده‌است.
اکثر زلزله تکتونیکی در حلقۀ آتش درعمقی کمتراز ده‌ها کیلومتر ناشی می‌شوند. زلزله‌های درعمق کمتر از ۷۰ کیلومتر به عنوان زمین لرزه‌ها ی کانون-کم عمق طبقه‌بندی می‌شوند، در حالی که با فاصله کانونی بین ۷۰ و ۳۰۰ کیلومتر معمولاً 'کانون-میانی ' یا 'زلزله متوسط عمق' نامیده می‌شوند. در مناطق فرورانش، جایی که پوسته اقیانوسی مسن تر و سردتر در بشقاب تکتونیکی دیگر می‌رود، زلزله‌ها ممکن است در عمق بسیار بیشتری (در محدودۀ ۳۰۰ تا ۷۰۰ کیلومتر) رخ دهند. این نواحی مرتعش فعال همراه با فرورانش به عنوان مناطق (Wadati - Benioff) شناخته شده‌است. کانون-عمیق زلزله‌ها در عمق زیاد می‌باشند که در آن ناحیه، سنگ کره با توجه به درجۀ حرارت بالا و فشار دیگر شکننده نیست. مکانیسم احتمالی برای نسل کانون-عمیق زلزله‌ها ناشی از اولین تحت تغییر فاز به ساختار صلبی است.

بعضی از زلزله‌ها در مناطق آتشفشانی رخ می‌دهند، آن‌ها توسط حرکت ماگما در آتشفشان‌ها ایجاد می‌شوند. چنین زلزله‌هایی می‌توانند به عنوان هشدار دهندۀ زود هنگام فوران آتشفشانی را خبر دهند، مانند زلزله‌ها در طول فوران کوه سنت هلن در ۱۹۸۰. زیاد شدن زلزله‌ها در اطراف یک آتشفشان فعّال می‌تواند به عنوان نشانۀ برای قریب‌الوقوع بودن فعالیت آتشفشانی باشد. زیاد شدن فعالیت لرزه‌ای قبل از فوران یک آتشفشان می‌تواند توسط زلزله نگارها و دستگاه‌های شیب‌سنج (tiltimeters)ثبت شوند.
پس لرزه زلزلۀ است که پس از زلزله اصلی، (mainshock) رخ می‌دهد. پس لرزه در منطقۀ همان شوک اصلی است، اما همیشه از لحاظ قدرت کوچکتر است. اگر پس لرزه بزرگ‌تر از شوک اصلی باشد، پس لرزه به عنوان شوک اصلی و شوک اولیه اصلی به عنوان Aftershock نام‌گذاری می‌شود. پس لرزه‌ها زمانی به وجود می‌آیند که پوسته در اطراف صفحه گسل جابه‌جا شده با اثرات شوک اصلی تطبیق داده می‌شود.
ازدحام زلزله، سلسلۀ از زمین لرزه‌هاست که در منطقۀ خاص در مدت زمان کوتاهی اتفاق می‌افتند. آن‌ها با زلزله‌هایی که به دنبال آن‌ها مجموعۀ از پس لرزه‌هاست متفاوتند با توجه به این واقعیت که هیچ‌کدام از تک زمین لرزه‌ها در دنباله شوک اصلی نیست، بنابراین هیچ‌یک قدرت قابل توجهی بالاتر از دیگران ندارد. گاهی اوقات یک سری از زمین لرزه‌ها به صورت طوفان زلزله رخ می‌دهد، که در آن زلزله به گسل پرخوشه ضربه می‌زند، که باعث لرزش یا توزیع مجدّد تنش از زلزله قبلی ارسال شده، می‌شود. مشابه پس لرزه‌ها اما در بخش‌های مجاور گسل، این طوفان‌ها طی سالیان اتفاق می‌افتد، همراه با برخی زلزله‌هایی که به اندازهٔ زلزله‌های اولیه مخرب‌اند. چنین الگویی در دنبالهٔ زلزله‌ها در گسل شمال آناتولی در ترکیه در قرن ۲۰ مشاهده شد و برای خوشه‌های غیرعادی قدیمی از زلزله بزرگ در خاور میانه استنباط شد.

حدود ۵۰۰٬۰۰۰ زمین لرزه در هر سال وجود دارد که از این تعداد ۱۰۰٬۰۰۰ تا می‌تواند احساس شود. زمین لرزهٔ کوچک به‌طور مداوم در سراسر جهان در مناطقی مانند کالیفرنیا و آلاسکا، ایالات متحده همچنین در گواتیمالا، شیلی، پیرو، اندونزیا، ایران،افغانستان، پاکستان، ترکیه، نیوزیلند، یونان، ایتالیا وجاپان رخ می‌دهد، اما زلزله می‌تواند، تقریباً در هر نقطه رخ دهد، از جمله نیویارک، لندن و استرالیا. زمین لرزهٔ بزرگتر کمتر اتفاق می‌افتد، رابطه به صورت نمایی است؛ برای مثال، تقریباً ده برابراز زلزله‌ها ی بزرگتر از شدت ۴ در یک دوره زمانی خاص نسبت به زلزله‌های بزرگتر از شدت ۵ رخ می‌دهد. در (لرزه خیزی کم) انگلستان، به عنوان مثال، محاسبه شده‌است که عود به‌طور متوسط عبارتند از: زلزله ۳٫۷ -- ۴٫۶ در هر سال، زلزله ۴٫۷ -- ۵٫۵ هر ۱۰ سال، و زلزله ۵٫۶ یا بالاتر در هر ۱۰۰ سال است. این نمونه‌ای از قانون گوتنبرگ- ریشتر است. تعداد ایستگاه‌های لرزه‌ای از حدود ۳۵۰ در سال ۱۹۳۱ امروزه به هزارها افزایش یافته‌است. نتیجتاً، تعداد بیشتری زمین لرزه نسبت به گذشته منتشر می‌شود، اما این به دلیل بهبود ابزار اندازه‌گیری است نه به دلیل افزایش تعداد زمین لرزه‌ها. (USGS) تخمین می‌زنند که از سال ۱۹۰۰ تا به حال به‌طور متوسط ۱۸ زلزله بزرگ (قدر ۷٫۰–۷٫۹) و یک زلزله خیلی بزرگ (قدر ۸٫۰ یا بیشتر) در هر سال وجود داشته‌است، و این نسبت تقریباً ثابت بوده‌است. در سال‌های اخیر، تعداد زمین لرزه‌های بزرگ در هر سال کاهش یافته‌است، اگرچه این نتیجۀ نوسانات آماری است، نه از روند سیستماتیک. آمار دقیق بیشتر در اندازه و تعداد زلزله‌ها، از (USGS) در دسترس است. بسیاری از زمین لرزه‌های جهان (۹۰ ٪ و ۸۱ ٪ از بزرگترین) در طول ۰۰۰٬۴۰ کیلومتر، منطقه نعل اسپی شکل به نام کمربند زمین لرزه سیرکم پاسیفیک(circum-Pacific seismic belt)، که همچنین به عنوان زنگ آتش اقیانوس آرام شناخته شده، اتفاق می‌افتند؛ که در اکثر نقاط با صفحهٔ اقیانوس آرام هم‌مرز است. زلزله‌های بزرگ تمایل دارند در طول مرز صفحه‌های دیگر نیز رخ دهند: مثلاً در امتداد کوه‌های هیمالیا. با رشد سریع شهرهای بزرگ مانند مکسیکوسیتی، توکیو و تهران، در مناطق پر خطر زمین لرزه اند.
زمین لرزه ها توسط حرکت صفحات تکتونیکی زمین ایجاد می‌شوند، فعالیت‌های انسانی نیز می‌تواند زمین‌لرزه تولید کند. چهار گونه فعالیت‌های اصلی در این پدیده مشارکت می‌کنند: احداث سدها و ساختمان‌های بزرگ، حفاری و تزریق مایع به داخل چاه، استخراج از معادن زغال‌سنگ، و استخراج نفت. شاید بهترین نمونه شناخته شده زمین‌لرزه سال ۲۰۰۸ در استان سیچوان چین است، این لرزش منجر به تلفات ۲۲۷۶۹، نفر شد و نوزدهمین زمین‌لرزه مرگبار در تمام دوران‌ها بوده ‌است. باور بر این است که سد زیپینگو (Zipingpu)، زیر فشار گسل ۱۶۵۰ فوت (۵۰۳ متر) نوسان یافته؛ این فشار احتمالاً قدرت زمین‌لرزه را افزایش داده و سرعت حرکت گسل را شتاب بخشیده‌است. همچنین بزرگترین زمین لرزۀ که در تاریخ استرالیا روی داد، توسط بشر القا شده بود؛ از طریق استخراج از معادن زغال‌سنگ. شهر نیوکاسل بر بخش بزرگی از مناطق استخراج معادن زغال‌سنگ ساخته شده بود. زلزله از گسلی که به خاطر استخراج میلیون‌ها تن سنگ معدن ایجاد شده بود، تولید شد.
در سال ۲۰۱۱ میلادی، وقوع تعداد ۱۱ زمین‌لرزۀ نامعمول در شهر یانگ استون در ایالت اوهایوی آمریکا باعث شد که پژوهشگران به این نتیجه برسند که فعالیت‌های اکتشاف گاز و تزریق مایع به درون لایه‌های زمین در آن منطقه باعث فشار بر لایه‌ها و عامل بروز زمین‌لرزه شده‌اند.
زلزله را می‌توان توسط لرزه‌نگار(seismometers) تا فواصل بسیار بزرگ ثبت کرد، چرا که امواج لرزه‌ای حتی از داخل زمین هم عبور می‌کنند. قدر مطلق اندازهٔ زلزله مطابق قرارداد توسط اعداد در مقیاس قدر گشتاور (که قبلاً در مقیاس ریشتر، از قدر ۷ باعث آسیب جدی و بزرگ بیشتر مناطق گزارش شده)، در حالی که احساس قدر با استفاده از مقیاس مرکالی گزارش می‌شود. هر لرزش انواع امواج لرزه‌ای را تولید می‌کند که با سرعت‌های مختلف از داخل سنگ عبور می‌کنند: امواج طولی P (امواج ضربه‌ای یا فشاری) امواج عرضی S (هر دو امواج بدن) و امواج سطحی مختلف (امواج ریلی). سرعت انتشار امواج لرزه‌ای حاصل از محدوده تقریبی ۳ کیلومتر بر ثانیه تا ۱۳ کیلومتر بر ثانیه، بسته به تراکم و کشش از مقدار میانه تغییر می‌کند. در داخل کرۀ زمین امواج ضربه‌ای یا P بسیار سریع تر از امواج S حرکت می‌کنند. (تقریباً ۱٫۷: ۱). تفاوت در زمان سفر امواج از کانون به رصدخانه برای اندازه‌گیری فاصله‌است و می‌تواند منابع لرزه و ساختار درون زمین را نشان دهد. همچنین عمق کانون (hypocenter) را می‌توان به‌طور تقریبی محاسبه کرد. قانون کلی: به‌طور متوسط، فاصله (کیلومتر) به زلزله برابر است با زمان (ثانیه) بین امواج P و S. انحراف خفیف به دلیل ناهمگن بودن لایه‌های زیرسطحی زمین است.
لرزاندن و گسیختگی زمین اثرات اصلی ایجاد شده توسط زمین لرزه هستند، اساساً منجر به آسیب زیاد یا کم ساختمان‌ها و دیگر سازه‌های نرم و سخت می‌شود. شدت عوارض بستگی به ترکیب پیچیدهٔ بزرگی زلزله، فاصله از مرکز زلزله، شرایط زمین‌شناسی و geomorpholical محل دارد که باعث تقویت یا کاهش انتشار امواج می‌شود. تکان زمین را با شتاب زمین اندازه‌گیری می‌کنند. ویژگی‌های خاص زمین‌شناسی، geomorphological و geostructural محل می‌توانند میزان لرزش زمین را حتی در زلزله‌های کم شدت افزایش دهند. این اثر، سایت یا تقویت محلی نامیده شده‌است. اصولاً به دلیل انتقال حرکت لرزه‌ای از خاک سخت به خاک سطحی نرم، تمرکز و ذخیرهٔ انرژی لرزه‌ای در کانون به علت نوعی تنظیم هندسی می‌باشد. گسیختگی زمین در واقع شکستن آشکار و جابه جایی سطح کره زمین در طول گسل است که ممکن است در مورد زلزله بزرگ مترها باشد.

گسیختگی زمین خطر بزرگی برای سازه‌های مهندسی بزرگ مانند سدها، پل‌ها و ایستگاه‌های قدرت هسته‌ای است در نتیجه نیاز به نقشه‌برداری دقیق از گسل‌های موجود برای شناسایی هر گونه احتمال شکستن سطح زمین در طول مدت عمر سازه وجود دارد.
زلزله، همراه با طوفان شدید، فعالیت آتشفشانی، برخورد موج ساحلی، و آتش‌سوزی بزرگ، می‌تواند منجر به عدم ثبات شیب زمین و خطر بزرگی در زمین‌شناسی شود. خطر زمین لغزش حتی ممکن است در حالی که پرسنل نجات اقدام به نجات می‌کنند باقی بماند.
زلزله می‌تواند با صدمه زدن به قدرت برق یا خطوط گاز منجر به آتش‌سوزی شود. در صورت صدمه به شبکه آبرسانی و از دست دادن فشار، جلوگیری از گسترش آتش نیز ممکن است مشکل شود. برای مثال، مرگ و میر در زلزله ۱۹۰۶ سان فرانسیسکو بیشتر توسط آتش‌سوزی بود تا از زلزله. روانگرایی خاک یا شبیه به مایع عمل کردن خاک وقتی رخ می‌دهد که، به خاطر تکانها، دانه‌های مواد اشباع شده با آب (مانند ریگ و سنگریزه) به‌طور موقت استحکام خود را از دست داده و از شکل جامد به حالت روان تبدیل شوند. روانگرایی خاک می‌تواند ساختارهای نرم و سخت، مانند ساختمان‌ها و پل‌ها را، کج کند یا به ساختارهای فرورونده تبدیل کند. برای مثال، در زلزله ۱۹۶۴ آلاسکا، روانگرایی خاک باعث شد ساختمان‌های بسیاری در زمین فروروند و در نهایت به روی خود فرو بریزند.

سونامی، موجهایی با طول بلند، امواج طولانی مدت دریا هستند که توسط حرکت ناگهانی حجم زیادی از آب تولید می‌شوند. در اقیانوس فاصله بین فاکتورهای اوج موج می‌تواند ۱۰۰ کیلومتر فراتر، و دوره‌های موج می‌تواند از پنج دقیقه تا یک ساعت متفاوت باشد. چنین سونامی، ۶۰۰–۸۰۰ کیلومتر در ساعت، بسته به عمق آب حرکت می‌کند. امواج بزرگ تولید شده توسط زلزله یا زمین لغزش زیر دریایی می‌تواند در نزدیکی مناطق ساحلی در عرض چند دقیقه تاخت و تاز کند. سونامی همچنین می‌تواند هزاران کیلومتر در سراسر اقیانوس حرکت کند و ساعت‌ها بعد از زلزلۀ که آن را تولید کرده، سواحل دور را تخریب کند. در حالت عادی، زلزله فرورانش کمتر از قدر ۷٫۵ در مقیاس ریشتر سونامی ایجاد نمی‌کند، هر چند برخی از این موارد ثبت شده‌است. بیشتر سونامی‌های مخرب توسط زمین لرزه با بیشتر از بزرگی ۷٫۵ ریشتر ایجاد می‌شود.
سیل سرریز شدن هر مقدار آب است که به زمین می‌رسد. سیل معمولاً هنگامی رخ می‌دهد که حجم آب داخل بستر، مثلاً رودخانه یا دریاچه، بیش از ظرفیت کل آن شود، و در نتیجه مقداری آب جاری شود و در خارج از محیط طبیعی بستر قرار بگیرد. با این حال، اگر سد آسیب ببیند سیل اثرات ثانویهٔ زلزله‌است. زلزله ممکن است موجب ریزش خاک کوه شود و جریان رودخانه را مسدود کند که علت سیل شود. تحقیقات نشان داده‌است ارتباط قوی بین نیروهای کشندی (جزر و مدی) کوچک و لرزش‌های غیر آتشفشانی وجود دارد.

به منظور تعیین احتمال فعالیت‌های لرزه‌نگاری آینده، زمین شناسان و دانشمندان سنگ‌های منطقه را بررسی می‌کنند تا تعیین کنند اگر سنگ‌ها به نظر «فشرده» می‌رسد. مطالعهٔ گسل‌های یک منطقه به مطالعهٔ زمان سپری شده برای تشکیل فشار کافی برای وقوع زلزله توسط گسل نیز به عنوان یک تکنیک پیش‌بینی، کمک می‌کند. اندازه‌گیری‌ها بر اساس میزان انرژی کرنش انباشته در گسل در هر سال، زمان سپری شده از آخرین زلزله بزرگ، و انرژی و قدرت آخرین زلزله بنا می‌شوند. تمام این حقایق به دانشمندان اجازه می‌دهد میزان فشار لازم برای ایجاد گسل زلزله را تعیین کنند. اگرچه این روش بسیار مفید است، آن را تا به حال تنها در گسل سان آندریاس کالیفرنیا اجرا کرده‌اند. امروزه راه‌هایی برای محافظت و آماده‌سازی محل‌های احتمالی زمین لرزه از آسیب شدید وجود دارد که از طریق فرایندهای زیر است: مهندسی زلزله، آمادگی دربرابر زلزله، ایمنی لرزه‌ای خانواده، دایر کردن تجهیزات لرزه‌ای (از جمله اتصالات، مواد و روش‌های خاص)، خطر زلزله، کاهش حرکت زمین لرزه، و پیش‌بینی زلزله. مقاوم‌سازی لرزه‌ای این است که ساختارهای موجود را نسبت به فعالیت‌های زمین لرزه، حرکت زمین یا شکست خاک ناشی از زلزله مقاوم تر و بهتر کند. با درک بهتر از تقاضا لرزه‌ای در سازه‌ها و با تجربه‌های اخیر زمین لرزه‌های بزرگ در نزدیکی مراکز شهری، نیاز به مقاوم‌سازی لرزه‌ای هرچه بیشتر است. قبل از معرفی کدهای مدرن لرزه در اواخر ۱۹۶۰ برای کشورهای توسعه یافته (آمریکا، جاپان و …) و در اواخر ۱۹۷۰ برای بسیاری از دیگر نقاط جهان (ترکیه، چین و …)، سازه‌های بسیاری بدون جزئیات کافی برای محافظت و تقویت لرزه‌ای طراحی شده بودند. با در نظر گرفتن مشکل قریب‌الوقوع، کارهای تحقیقاتی مختلفی انجام گرفت. علاوه بر این، دستورالعمل‌های فنی برای ارزیابی لرزه‌ای، در سراسر جهان ایجاد و بازسازی شده‌اند و به چاپ رسیده‌اند—مانند ASCE - SEI ۴۱ و دستورالعمل انجمن مهندسی زلزله نیوزیلند (NZSEE).
باور های خرافی در مورد حوادث طبیعی بویژه زمین لرزه در بین مردم عام بویژه پیروان ادیان فراوان و گوناگون اند. عدۀ باور دارند که زمین بر شاخ گاو است و هرگاه گاو می جنبد زمین لرزه رخ می دهد، عدۀ بر این باور اند که بخار آب در حفره های زمین سبب زمین لرزه می شود یعنی که زمین لرزه توسط تنش میان زمین و آب تولید می‌شود. عدۀ باور دارند که شیب قسمت کوتاه از خشکی و رطوبت موجب فعالیت‌های لرزه‌ای می‌شود. عدۀ رعد و برق زیر زمین را سبب زمین لرزه میدانند. عدۀ دیگر زمین لرزه را کثرت گناه و سرکشی از فرامین و خشم خدایان می دانند.
بزرگی زلزله، M برابر لگاریتم در پایه ده دامنه حداکثر (برحسب میکرون) حرکت، A، است که توسط لرزه‌سنج ستندرد ووداندرسون در فاصلۀ صد کیلومتری از مرکز زلزله ثبت شده باشد. با یک محاسبه ساده می‌توان نشان داد که با افزایش یک درجه‌ای اندازه بزرگی زلزله، مقدار انرژی آزاد شده تقریباً ۳۲ برابر می‌گردد.
زلزله‌ها از دید جهت آزاد شدن انرژی به دو گونهٔ افقی و عمودی تقسیم‌بندی می‌شوند. خرابی‌های عمده و وسیع معمولاً بر اثر زلزله‌هایی از نوع افقی صورت می‌پذیرند. چرا که اغلب بناها در برابر بارهای عمودی مقاومت کافی دارند.

عزیزی غزنوی تورنتو/کانادا

لوستل شوی 812 ځله
دې ته ورته نورې ليکنې « دریا